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Two-state representations of three-state neural networks 
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H A 9  7PP, U K  

Received 15 September 1989 

Abstract. We investigate to what extent the dynamical behaviour of nets consisting of 
three-state neurons can be realised in nets using two-state neurons. We find that the 
generalisation from a two-state neuron to a three-state neuron cannot introduce any new 
behaviour in the deterministic case, but can do so for noisy nets, even in the zero-noise 
limit. For those noisy three-state nets which have a Hamiltonian description and a two-state 
representation we investigate the relationship between the three-state Hamiltonian and the 
two-state Hamiltonian, and find an interesting level-splitting phenomenon. 

1. Introduction 

One of the most widely studied, and best understood, neural network models is the 
binary threshold model of Hopfield and Little (Hopfield 1982, Little 1974). Recently 
there has been growing interest in generalising such networks to ones with three-state 
neurons (e.g. Meunier et a1 1989 ( M H V )  and Yedidia 1989). In particular M H V  claim 
that such three-state nets offer superior performance for a variety of problems. 

The aim of this paper is to investigate to what extent such three-state networks 
exhibit behaviour fundamentally different from two-state ones. In particular we 
examine when the dynamical behaviour of a three-state net can be duplicated by some 
appropriately chosen two-state net. A priori, we would expect that the generalisation 
from two-state neurons to three-state neurons ought to lead to a wider class of possible 
behaviour. It turns out that for deterministic nets this is not so, and it is very easy to 
see that, for instance, every three-state net of the type studied by M H V  and by Yedidia 
can be rewritten as a two-state net with twice the number of neurons. 

On the other hand, when noise is added we find that, in general, given a three-state 
net there is no two-state net with equivalent (probabilistic) dynamics. This can be true 
for even arbitrarily low noise levels; thus there are three-state nets whose deterministic 
behaviour can be represented by a two-state net, but as soon as an arbitrarily small 
amount of noise is added, no such representation is possible. This is, for instance, the 
case for the M H V  net if the activations are sufficiently high. The Yedidia net, on the 
other hand, does always have a two-state representation for sufficiently low noise levels. 

Lastly, for those three-state nets (such as the Yedidia model) which have a Hamil- 
tonian description (Peretto 1984), we examine the relationship between the three-state 
Hamiltonian and the two-state Hamiltonian. We find that in general they are not 
equal, and the two-state Hamiltonian exhibits an interesting phenomenon of level 
splitting with respect to the three-state Hamiltonian. This is due to the fact that the 
two-state representation is not one-to-one; that is, each state of the three-state net 
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corresponds to more than one state of the equivalent two-state net. In general the 
energies of all these latter states will be different. As one might expect, however, the 
two Hamiltonians do have the same ground states. 

2. Deterministic behaviour 

We shall consider networks of N neurons with connection weights wrJ E R. The state 
of neuron i at time t is a , ( r ) .  We assume that the net evolves in discrete time steps, 
i.e. that t is an integer. Throughout this paper we shall assume parallel dynamics; that 
is, all the a, are updated simultaneously. By far the most common two-state determinis- 
tic dynamics studied is a simple threshold model: 

if h,( t )  3 V, 
if h i ( ? )  < V, 

a, ( t + 1) = 

where 
N 

h , ( t ) =  1 w,a,(t) 

with a , ( t ) E ( - l ,  l}, and V, is a fixed threshold. The natural generalisation to a 
three-state net is to consider a,( t )  E {-1,0, l}, define a second threshold U, S V, (though 
often one takes U, = - V,,  with VI 5 O ) ,  and set 

1 if h,( t )  3 VI 
if U , s h , ( t ) <  V, 
if h,( t )  < U, 

with h, as before. Given such a three-state net, it is a trivial observation that there is 
a two-state net with exactly the same dynamics. Namely, we replace each three-state 
neuron (in state a,)  by a pair of two-state neurons in states s, and S;., so that ai = i(s, + ;t). 
Thus we take 

if h,( t )  2 VI {-: if h , ( t ) <  V,  

if h,( t )  3 U, {-: if h,( t )  < U, 

S I ( ? +  1 )  = 

.i, ( t  + 1) = 

(2.3) 

with 
N 

A,(?) = h , ( s , ( t ) + S ; ( t ) ) .  
/ = 1  

Clearly this is still a simple binary threshold net with thresholds V, and U, and 
connection weights ;U,, between either of s, and f, to either of s, and S;.  Note that 
since we always have s, c ;,, the state (1, -1) of a pair is impossible. We thus have a 
one-to-one correspondence between states of the three-state net and the two-state 
representation. Thus the dynamics of a, will be exactly the same as the dynamics of 

Also observe that any two-state net can be realised as a three-state net simply by 
setting V ,  = U,. Thus the class of possible behaviours for such three-state networks is 

;(SI + {!). 
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exactly the same as the class of possible behaviours for two-state networks. If, however, 
we require V, = -Ui (which M H V  and Yedidia do) then this is only possible for V, = 0, 
in which case the three-state nets form a proper subclass of all possible two-state nets. 

One natural generalisation of the two-state representation is to allow different inputs 
to si and ti. Thus we would replace the equation for ii by 

if 6 , ( t )  3 U, I-: if 6 , ( t )  < U, 
i,( t + 1) = 

with 
h. 

& ( t )  = c + 4 / b / ( O + ~ , ( t ) ) .  
J = 1  

Note that in general we no longer have s, S i,, and hence the state (1, -1) can now be 
attained. However, the dynamics preserves the essential features of three-state 
behaviour since the evolution depends only on a,( t )  = (s,( t )  + tt( t ) )  which can only be 
in one of three states. The state a,( t )  = 0 which corresponds to a lack of information 
thus now has two representations (-1, 1) and (1, -1). This generalisation might be 
useful since it allows the rules for the a , ( t )  = 1 state and the a , ( t )  = -1 state to be 
asymmetrical, but note that it cannot be written in a simple manner as a net with 
three-state neurons. 

We can obviously use the same technique for other types of deterministic three-state 
behaviour, though the resulting two-state coding will not always be so elegant. 

3. Noisy three-state nets 

In the most general case a noisy net is determined by the Markov chain which specifies 
the transition probabilities amongst all the possible states of the net. Denote the state 
of the whole net by a ( t )  = ( a l ( t ) ,  . . . , U N (  t ) ) ,  where a,( t )  is the state of the ith neuron 
at time t. Then for a three-state net of N neurons the Markov chain is given by the 
3 N  x 3 N  matrix with entries Pbc = P(a( t + 1) = cia( t )  = b )  defining the probability that 
the net is in state c at time t + 1 given that it was in state b at time t. In general not 
every Markov chain Pbr gives a neural net; this is because for a realistic net we expect 
the conditional firing probabilities of distinct neurons to be independent (as random 
variables). In other words, we require 

P( U ,  ( t + 1 )  = C, A U] ( f + 1) = CI 1 U (  f ) = b )  

= 9 ( a , ( t  + 1) = c , l u ( t )  = b)P(a,( t  + 1) = c, lu(t )  = b )  

with 

p( U, ( t + 1) = C, A U, ( f + 1) = Cl I U ( t ) = b )  = 1 P b d  
d d ,  = c! .d, = c, 

P ( a , ( t +  1)=  c , l u ( t ) =  b ) =  P b d  
d d, = c, 

and similarly for P(a,( t + 1) = cJu( t )  = b ) .  Note that this implies that 

N 

Pbe= n P ( a , ( t + l ) = c , l u ( t ) =  b ) .  
r = 1  
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Given such a noisy three-state net, we again attempt to find an equivalent two-state 
net by replacing each three-state neuron by two two-state ones. It remains to define 
the two-state net transition probabilities. At first it might seem that we can do this by 

P ( S ( t + l ) = X I S ( t ) =  y)=p,(Y),(x) 
where S = (SI,  . . . , S N )  is the state of the two-state net, with Si = (si, fi), and + is a 
function from the states of the two-state net to the states of the three-state net, given by 

$(s)=(f (s l+f l ) ,  . , $ ( s N + f N ) ) ) .  

There are, however, two problems with this. The first is that (unlike in the 
deterministic case) + is in general not one-to-one, and thus 

c P,,Y,,(X,> 1. 
X 

We can overcome this by spreading P,(,,,(,, amongst all the states X ’  with $ ( X ’ )  = 
+ ( X ) .  There will be 2m(X) such states, where m(X) = #{k xi = -&} and hence we have 
a large choice of how to do this. This brings up the second problem: do any of these 
choices give a two-state net with independent neuron firing probabilities. Clearly we 
can choose si and fi to be independent of sj and 4 for i # j .  The question is thus 
whether or not si can be chosen independent of fi. It turns out that in general this is 
not so. To see this, let us fix a particular state a( t) = b for the three-state net and 
S( t )  = Y with +( Y) = b, and consider the ith neuron. Let 
P ( a , ( t +  1) = +1) = a 

P ( s i ( t + l ) = l ) = p  P ( f1 ( t+ l )=  l ) = q  

P ( U j ( t  + 1) = -1) = p P ( a , ( t + l ) = O ) =  y 

and 

where all probabilities are conditional on b and Y respectively. Then if si and fi are 
to be independent, p and q must satisfy the equations 

P 4 = “  (1 -PHI - 4 )  = P  ( 1 - P I 9  + ( 1 - 4 )P = Y. (3.1) 
This occurs if and only if p and q are the roots of the quadratic 

f ( ~ ) = ~ * + ( p  - a  - 1 ) ~  + a  

which gives 
p ,  q = f( y + 2 a  * J y z  -4ap). (3.2) 

We thus see that if yz<4ap,  there are no real solutions of equation (3.1). On the 
other hand, if y 2  2 4ap, it is easy to check that both roots off lie in the interval [0,1], 
and hence give valid firing probabilities for si and ti. This is because f(0) = a > 0, 
f( 1) = p > 0, the minimum off  is taken at A,, = +( 1 + a - p )  E [0,1]. Thus we see that 
the three-state neuron can be represented by two independent two-state neurons if and 
only if 

y2 3 4ap. (3.3) 
The dividing line y z  = 4ap can be written in terms of a and p as ( a  - p)’ = 2( a + p -;); 
this is a parabola passing through (l,O), ($, $) and (0, 1). 

The conditional probabilities a, p and y will of course depend on the state b and 
the neuron i. For an arbitrary three-state net we cannot expect (3.3) to be satisfied for 
every such choice of state and neuron. We thus conclude that, in contrast to the 
deterministic case, noisy three-state nets cannot in general be represented by two-state 
nets. 
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4. Low-noise case 

Given the above discrepancy between deterministic nets and noisy ones, we might at 
least hope that if the noise in the three-state net is sufficiently small (so that we are 
close to the deterministic case) we can always find an equivalent two-state representa- 
tion. It turns out that even this is not the case. We shall consider two slightly different 
noisy three-state models, namely those defined by M H V  and by Yedidia (1989). As 
before, let 

N 

= C wi ja j ( t )  
J = I  

for some fixed set of weights w y  and thresholds V, > 0. Then the M H V  model assigns 
the following conditional firing probabilities to the ith neuron: 

1 
l+exp[-(hi( t ) -  V , ) / 7 ]  

9 ( a i ( t + l ) = + l ) =  

9 ( a i ( t + l ) = - l ) =  (4.1) 
1 

1 + exp[ ( hi ( t 1 + V,.)/ 71 

(4.2) 

1 
Z, 

9( a,( t + 1) = 0) = - 

where 

z, = l+exp[(h i ( t ) -  V,)/~I+exp[--(h,(t)+ V,)/71. 
Here, T is a noise or 'temperature' parameter and as T + 0 the noise in the net tends 
to zero. Note that in the limit T + 0 both of the above models give the deterministic 
dynamics described in section 2 (with U, = -Vi). For small T we can thus regard them 
as noisy versions of the deterministic net. 

Let us first consider the M H V  model. Define a, p and y as in section 3, and let 

A , ( h , ) =  ~ ' - 4 a p .  

A straightforward calculation yields 

A , ( h , )  = 
4sinh2( V , / T ) - ~  exp(-V,/.r)[cosh( V , / T ) + C O S ~ ( ~ , / T ) ]  

4[cosh( V , / ~ ) + c o s h ( h , / ~ ) ] *  

Now, the dominant terms in the numerator as T + 0 are, respectively, 

exp(2 v , / T )  if lh,1<3V, 

-4 exp[( h, - V, )/ 71 
-4 exp[-(hi + V,)/T.] 

if h, z 3 V,  
if hi d -3 V,. 
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In order to satisfy (3.3), we want A , (  h , )  3 0 for all sufficiently small T,  and hence require 
the leading term to be exp(2 V,/ 7 ) .  Thus a given M H V  net has a two-state representation 
for sufficiently low noise if and only if the activation h, is reasonably small, i.e. Ih,l< 3 V,, 
for all neurons i and all possible states a ( t ) .  We therefore conclude that even in the 
case of low noise many M H V  three-state nets are not representable by two-state models. 

On the other hand, for Yedidia's model we have 

1 - 4 exp( -2  V,/ T )  

Zf 
A , ( h , )  = 

Clearly for T sufficiently small we have A ,  3 0, and in fact we can choose T uniformly 
in i and h,. We then get the following two-state firing probabilities: 

1 + 2 exp[(h, - V , ) / T ]  - J 1 - 4  exp(-2 v , / T )  

2 z, 

1+2exp[(h,-  VI) /~]+J l -4exp(-2V, / . r )  
2 Zl 

P(s,(t + 1 )  = 1) = 

P(!,( t + 1) = 1) = 

(4.3) 

with zi defined as before. In the limit T + O ,  this gives the deterministic two-state 
dynamics described in section 2 ,  as expected. Also note that as T +  0, this model 
approaches the well known model of Little (1974) with thresholds V, and - V,  for si 
and !i respectively: 

(4.4) 
1 

1 +exp[-(h,(t)+ Y , ) / T ] '  
P(!i(t+ 1) = 1) = 

This is, of course, a noisy version of the dynamics given by (2.3) with U, = - V,.. Observe 
that unlike the Little model, the distributions (4.3) are not symmetric about the 
thresholds -V, and V,. 

One way to ensure that there is a two-state representation for all values of T is to 
reverse the above procedure, and construct a three-state net from a two-state one. 
Thus, starting with (4.4) we get the three-state model with probabilities 

exp(- V,/T) +exp( V , / T )  - 2 cosh( V , / T )  
P(a , ( t  + 1) =0)  = - 

z ,  zt 

with 

2, = exp( VI/ 7 )  + exp(- V J T )  + exp(h(t) /  T )  + exp(-h,( r ) / T )  

= 2  cosh( V , / 7 ) + 2  cosh(h,(t)/.r) 

with h , ( t )  defined as usual. We shall call this the Little three-state model. Given that 
the standard two-state Little model is so well understood, and there is a wide variety 
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of techniques available to study it, (4.5) would seem to be a good choice for the study 
of noisy three-state nets. It would be interesting to see whether its behaviour differed 
in any marked respect from the M H V  (4.1) and Yedidia (4.2) models. Certainly all 
three have the same zero-noise limit; however, this limit is approached in different 
ways. This, incidentally, accounts for the fact that (4.2) and (4.5) can be realised as 
two-state nets, whilst (4.1) cannot. 

Finally, note that, unlike in the deterministic case, when a two-state representation 
is possible, it is not one-to-one. Each state b of the three-state net corresponds to 2 m ' b )  
states of the two-state representation, where m( b )  = #{k  ai = O } .  These are precisely 
the states X such that +(X)  = b. The transition probability P,, to some other state Y 
is exactly the same for all these states, i.e. Pxy  = P x . y  for all X'such that + ( X )  = +(X'), 
and 

pbc=  c p X V  
Y : J ( Y ) = c  

for any X such that +(X)  = b. 

5. Hamiltonian formulation 

A particularly useful tool in the study of noisy neural nets has been the energy or 
Hamiltonian description of Peretto (1984). This can be applied to any net for which 
the associated Markov chain is irreducible, aperiodic (e.g. Feller 1968) and satisfies 
detailed balance, i.e. for which there exists some function F of the states such that 

For such a net, let p ( b ,  t )  be the probability that the net is in state b at time t (given 
some fixed initial condition a ( 0 )  at t = 0). Then a standard result on Markov chains 
states that, irrespective of the initial state a(O),  we have 

where the sum is over all possible states c. Writing H 7 ( b )  = -T log F ( b ) ,  we see that 
this limiting distribution is a Boltzmann one, with effective 'Hamiltonian' HT( b )  given 
by 

Such a formalism allows one to apply many of the standard techniques of statistical 
mechanics to the analysis of neural nets. In particular, in the limit 7 + 0 the net will 
settle into one of the ground states of lim7+,, H , ( b ) .  Thus the minima of limT+o H , ( b )  
determine the low-noise, long-time dynamics of the net. 

In this section we ask what the relationship is between the Hamiltonian HS(b)  of 
a three-state net and the Hamiltonian H?(X)  of its two-state representation, assuming 
that they both exist. Naively one might expect that H : ( X )  = H),(t,h(X)) for all states 
X. However, recall that + is in general not one-to-one, and the correct relationship 
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between the two Hamiltonians must thus be 

p X ( b ) =  c P"(X) 
X : $ L ( X I = b  

where 

In genere., there is no reason why any two states X and X' wit.. $(X') = $(X) should 
have the same energy. Indeed, for small T we expect a wide variation in the energy 
of the states in {X': t,h(X') = +(X)}. This is because in the deterministic limit only the 
state X, with x i s , ? i ,  for all i, is allowed. Thus only this state should enter into the 
sum in (5.1), and all the other states should have much higher energy. As we shall 
see below, this 'level splitting' is precisely the behaviour that we observe in the Yedidia 
and Little models, and in fact for these nets X, turns out to have minimum energy 
amongst the states in {X': $(X') = $(X)} for all values of 7 for which there is a two-state 
representation. Furthermore we find that 

This is a stronger condition than H3, and H ?  just having the same ground states. 
Note, however, that we have not been able to prove these results for an arbitrary 

three-state net with Hamiltonian and two-state representation, nor have we been able 
to show that if a three-state net has a Hamiltonian, then so does its two-state representa- 
tion (when it exists) or vice versa. 

First let us see which of the noisy nets considered above have Hamiltonian descrip- 
tions. From now on we shall only consider symmetric connections, i.e. q, = w , ~  for all 
i, j .  There seems little hope of detailed balance being satisfied for asymmetric nets in 
general. Also observe that all the noisy nets considered in this paper have Pbc > 0 for 
all states b, c, and hence are aperiodic and irreducible. It thus remains to verify detailed 
balance. In what follows we shall write 

N 

h , ( b ) =  c U&, 
/ = 1  

for three-state nets and 
N 

h,(X) = c hfJ,/(X,+,?J 
J = 1  

for two-state nets. 
M H V  were unable to find a Hamiltonian for their model, and in fact it is not difficult 

to show that their nets do not in general satisfy detailed balance except for trivial 
choices of weights. All the other nets considered in sections 3 and 4 turn out to have 
Hamiltonians. First recall that the standard Little model (of N neurons with thresholds 
V,) has the Hamiltonian (Peretto 1984) 

N N 

H ) ( S ) =  i =  1 I f s , v . - ~  I =  I logcosh[(j ,o,sj-V;)&] 
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Applying this to (4.4) with 2 N  neurons with thresholds Vi and - Vi, we get 
N N 

H F * ' ( X ) =  ~(x,-x ' , )V,-7 C logcosh[(h,(X)- V , ) / ~ T ]  
r = l  , = I  

N N 

= f ( ~ , - x ' ~ ) V , - 7  ~ o ~ [ c o s ~ ( ~ , ( X ) / ~ ) + C O S ~ ( V , / T ) ]  
, = I  , = I  

where we have ignored the constant term TN log 2. Observe that this cannot be written 
in terms of bi =;(xi + f i ) ,  and hence does not directly give a Hamiltonian for the 
three-state Little model (4.5). However, working directly from (4.5) we get 

hl '. 

H k S 3 ( b ) =  -7  log cosh( V , , / T ) - ~  log[Cosh(h,(b)/.r)+cosh( V1/7)]. 
i : b , = O  i = l  

Note that Hk.2(X) and Hk33( b )  exhibit precisely the level splitting described above. 
Now let us consider the Yedidia model. We can rewrite (4.2) as 

for c, E { -1 ,  0, 1) .  A straightforward calculation then yields 
N N 

H : * 3 ( b )  = Ib,l V ,  - 7 log z,(b) 
r = l  , = I  

for the three-state Yedidia model, with z,(b) as in (4.2). On the other hand, the 
probability distributions of the two-state representation (4.3) look quite different to 
those known to allow Hamiltonians, and hence we initially did not expect one to exist 
for this model. Remarkably, if we pair up the neurons x, and 2, and set X ,  = (x,, x'#) 
as before, we get 

1 + Ri 
2 zi 

s ( s ; ( t + l ) = ( - l , + l ) ) = -  

1 - R ,  
2 z, 

9 ( S ; ( t + l ) = ( + l ,  - l ) )= -  

zi = l+exp[(h i ( t ) -  V,) /~]+exp[-(h,( t )+ V,)/7] 

and as before h i ( t )  = hi (S ( r ) ) .  Observe that the X i  = (1, - 1 )  and X i  = ( -1 ,  1 )  cases 
only depend on hi(  t )  through the denominator zi, which is identical for all four states. 
This fortuitous cancellation allows us to write 
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wherec i= f (x i+ f i ) ,S i= l  i fX i=( - l , l ) andOothe rwiseandSI= l  i f X i = ( l , - 1 ) a n d  
0 otherwise. This gives the following Hamiltonian for the two-state net: 

N N 

H : J ( x )  = C $](XI +&)I  vi - -7 C log Z , ( X )  
i = l  r = l  

Again we see the level-splitting effect. Observe that this Hamiltonian exists only for 
4exp(-2&/-7)a 1, which is precisely the condition for the Yedidia net to have a 
two-state representation. Finally let us consider the zero-noise limit of the above 
Hamiltonians. Define the index sets 

O={i:Jh,l>, Vi} Or=  {i:JhiJ < v} 
for hi = h i ( b )  or hi = h i ( X )  respectively. For the Little two- and three-state models we 
then get 

l imHb3(b )=  - v - x l h i ( b ) l - C  V,. 
1-0 t:b,=O Q 0' 

Now, if b = $ ( X )  then 6, = f ( x l  +x",), and hence 6, = 0 if and only if x, = -f,, i.e. if and 
only if x, - 2, # 0. Hence the two limits are the same if and only if x, a 2, for all neurons 
i. In particular the minima of limT+o H > 2 ( X )  and limT+,, H k S 3 ( $ ( X ) )  are the same. 
Similarly for the Yedidia model we have 

N 

limH:*'(X)= $ l x i + f i I v , - C ( I h i ( ~ ) I -  vi) 
7-0 r = l  0 

Hence in this case we in fact have 

for all states X .  Also, apart from an irrelevant constant, the Yedidia three-state and 
Little three-state nets have the same Hamiltonians in the -7' 0 limit: 

As expected, the two-state limiting Hamiltonians agree only on states with xi Q f i .  
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6. Conclusion 

We have analysed which three-state networks of the type studied by M H V  and Yedidia 
can be realised as networks of two-state neurons. We have shown that for deterministic 
nets this can always be done and  have derived conditions under which it is possible 
for noisy nets. 

Our results raise several interesting points. 
( a )  M H V  study the deterministic properties of their model, and Yedidia studies the 

zero-temperature limit of his network. Both cases have a two-state representation and  
we thus conclude that neither M H V  nor Yedidia can hope to see any new behaviour 
as a result of their generalisation from two-state to three-state neurons. This appears 
to be in direct contrast to their claims of significantly improved performance by 
three-state nets. We believe that the resolution of this paradox lies in the fact that 
their three-state formalism is in fact selecting a subset of two-state models with especially 
good performance. In other words, rather than introducing new behaviour, M H V  and  
Yedidia are restricting attention to a subclass of behaviours with particularly useful 
features. 

( b )  It is not clear to us whether the significant properties of nets in this subclass 
are best described using a three-state formalism or a two-state one. In particular, M H V  

and  Yedidia suggest that one of the main advantages of their approach is that the 
third state of a neuron encodes the lack of relevant information at that neuron. In the 
two-state representation the equivalent situation is signalled by a disagreement in 
the states of adjacent neurons. Thus a competitive aspect is brought into the dynamics 
of the net. As we remarked in section 2 ,  this can be generalised in ways in which the 
three-state representation cannot be. We thus believe that further work is required to 
determine which approach is more productive. 

( c )  Finally, as regards performance, we should point out that our two-state rep- 
resentations are replacing one three-state neuron by two-state ones. This is fully in 
accordance with Yedidia’s observation that the storage capacity of his three-state 
networks is roughly double that of an ordinary two-state network. 

( d )  Given that all deterministic three-state nets d o  have a two-state representation, 
we were very surprised to find noisy examples such as the M H V  model where no 
two-state realisation is possible even for arbitrarily low noise levels. Furthermore, the 
Yedidia and  three-state Little models, which have the same deterministic limit as the 
M H V  net, do have two-state representations for sufficiently low noise levels. This 
illustrates very clearly both the singular nature of the zero-noise limit and the sensitive 
dependence of the microscopic dynamics on the way in which the noise is introduced. 

( e )  Similarly, the Yedidia and three-state Little models satisfy detailed balance 
whilst the M H V  model does not. This shows just how sensitive the existence of a 
Hamiltonian description is to the details of the model and underlines the importance 
of developing more general techniques for analysing noise networks. 

( f )  In common with M H V  and Yedidia, we have used parallel dynamics to update 
neurons. We believe that a similar analysis can be carried out for sequential dyanamics 
(i.e. where only one randomly chosen neuron is updated at each time step), but it will 
necessarily be more complicated. This is because if we update one of a pair of two-state 
neurons representing a single three-state neuron we alter the local field of the neuron 
in that pair. 

(g) Most of our analysis of three-state neurons should extend naturally the n-state 
threshold models. In particular, we expect that all deterministic nets should have 
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two-state representations, whilst more and more stringent conditions will be required 
for noisy nets to have such realisations. Another class of n-state generalisations of 
the Hopfield-Little networks are the Potts glass and related models (e.g. Cook 1989, 
and references therein). Kanter (1987) has investigated the two-state representations 
of such models. In particular, he shows the equivalence between the Hamiltonian of 
a multispin system with pair interactions and the Hamiltonian of an Ising-spin system 
with multispin interactions. Unlike the analysis presented in this paper, ( a )  Kanter 
only considers the Hamiltonian context, ( b )  except when n is a power of 2, his two-state 
neurons are not independent, and ( c )  his two-state system uses multispin interactions, 
rather than the standard pair interactions employed in our work. 

( h )  Finally, we remark that given the prevalence of binary logic in digital electronic 
circuitry, any hardware realisation of deterministic three-state networks is likely to be 
an implementation of their two-state representations. In the case of networks with 
noise the situation is not so clear, and indeed techniques for constructing noisy nets 
are still in their infancy. However, at least in the low-noise case, it is still likely that 
for those nets which do have a two-state representation, a two-state hardware realisation 
will be easier than a three-state one. 
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